

S&C: Understanding Root Causes & Assessing Effective Remedies C4R Final Dissemination Event, Paris 15th March 2017

Presenter:

Dr Yann Bezin

Institute of Railway Research, University of Huddersfield

Overview

- 1. Brief review of key damages and root causes in relation to S&C vehicle-track interaction
- 2. Understanding/predicting wheel and rail interaction at S&C
- 3. Predicting damage mechanisms in rails and support and identifying the key drivers
- 4. Assessing the benefit of crossing geometry change and other innovations on the system performance

#44 Failures catalogued in • public Deliverable-13.1

C4R S&C Failure Catalogue

Components damages in S&C

Root causes

System Design vehicle-track, wheel-rail...

Operational speed, loading, traffic mix...

Manufacturing processes &

capabilities...

Maintenance frequency, mechanised/manual repairs... Environmental local and weather variations...

Installation/set-up

tolerances and human factors...

2) Vehicle-track and wheel-rail interaction

Fundamental behaviour in S&C

Fundamental behaviour in S&C

-30-1010 30

Change in rolling radius difference (left/right) as stock rail moves outward and point of contact also

-15-35

Set induces a steering of the wheelset (angle of attack)

25

- Show and associated lateral steering forces (also the case on through route to a lesser extent)
- Sump (double) point contact introduces higher frequency force disturbances

Fundamental behaviour at crossing

- Shough lateral impact load is also present: RRD ⇒ angle of attack + lateral offset in diverging routes
- → Jump (double) in point contact at entry/exit of casting geometry (smoothed in reality by manual and operational grinding)
- ✓ Vertical impact at load transfer between wing and nose (vice versa)

Fundamental behaviour at crossing

Fundamental behaviour at crossing

- More parameters affecting reaction forces
 - Range of wheels and crossing geometry shapes
 - Vehicle types and steering ability (PYS)
 - Axles lateral position and angle of attack
 - Track geometry and misalignment
 - Support type and conditions
 - Direction of travel (through/diverging-facing/trailing)

3) Predicting damage mechanisms and identifying key drivers

Capacity for Rail Contact Pressure -RightRail -freight laden cen56f RCF initiation on crossing vee

4) Assessing the benefits of innovations

R

	FACING		average P1 forces			TRAILING	average P1 forces			
	FC56	Ŧ	NR60mk2	•	new v1		FC56	NR60mk2	new v1	
40kmh	09	%	-17	%		-12%	0%	6 -10%)	-13%
80kmh	09	%	-23	%		-17%	09	6 -19%		-21%
120kmh	09	%	-36	%		-21%	09	6 -19%)	-19%
average	09	%	-28	%		-18%	09	6 -17%		-19%
SD	09	%	-38	%		-39%	09	6 -8%)	-36%
μ+3xσ	09	%	-33	%		-29%	09	6 -12%)	-29%

Opportunities for innovation

- Geometry
 - Smooth changes (avoid contact jumps) and more conformal shapes
 - Ensure compliance with a wide range of representative wheels shapes
 - Minimise dip angle (geometrical calculation)
- Support
 - Use of USP, shorter sleeper spacing, resilient baseplate systems
 - Hybrid tracks > slab track
- Materials
 - Better resisting material for nose, wing, switches
- Monitoring
 - Profile geometry measurement (at regular time intervals)
 - Geometry monitoring (alignment in switch panel)
 - Vibration analysis (finding and eliminating high damage instances)
 - Track-side
 - On-board vehicles
 - Instrumented wheelset (not high frequencies enough)
 - Axle box accelerations (need to be tuned for HF + data collection) and need to know positions of S&C

Conclusions

- S&C attract disproportionate amount of damage and costs
- Careful wheel-rail geometry interaction can significantly improve system performance from design through to continuous monitoring for sustained performance
- Support discontinuity should be 'bridged' using more resilient layers (baseplate on resilient pad) and better load distribution within the superstructure and support layers
- High impact load instances can be monitored and ruled out, this requires both track side and vehicle based instrumentations and intelligence
- Numerical simulation together with site observation/measurement can offer a unique view of the system interaction
- Finally, simple rules and algorithm can be derived from studies as presented here for a more direct industrial applications

Thank you for your kind attention

Bezin Yann

Head of Research Institute of Railway Research University of Huddersfield <u>y.bezin@hud.ac.uk</u>

Acknowledgements:

